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The stability of a stationary plane-parallel convective motion induced by heat 
sources uniformly dis~ibuted in a vertical layer of fluid is considered. Unlike in 

the earlier paper [l-j, thermal perturbations and their effect on the development 
of hydrodynamic perturbations are taken into consideration. A fairly substantial 
effect of thermal factors is established even at Prandtl number P - 1. With fur- 
ther increasing P these factors become determining : there occurs a change, 
the hydrodynamic instability of the counterflows becomes the instability of the 
type of thermal running waves. At considerable Prandtl numbers the Grashof 
number tends to zero according to the law G, - P-‘i*. 

Investigation of the stability of a plane-parallel convective flow between vertical 
parallel planes with respect to small normal perturbations reduces to the spectral prob- 

lem of the amplitude of perturbation of the stream function TV and of temperature 6 

(see Cl]) 
A=q - ikGHrp + 9’ = --hAq 

P-$A9 + ikG (To’cp - vo6) = --he 
~(*1)=tp’j&i)=ef*Q=O 

All quantities in (1) are dimensionless, and v0 and To are, respectively, the unperturbed 
profiles of velocity and temperature, and k is the wave number. The decrement h is 

the eigenvalue of the boundary value problem. 
To solve the problem we use the Galerkin method,selecting the amplitudes of normal 

perturbations of the stream function and of temperature in the motionless fluid as the 

basic functions, which are defined by the boundary value problems 

We represent the approximate solution of problem (1) in the form 
N M 

9 = 2 ai( e = 2 bkcp 

i=O k==O 

(2) 

The orthogonality conditions of Galerkin’s method lead to a homogeneous system of 

linear equations for the coefficients ai and bk of the expansion. The perturbation decre- 
ments h = 5, + i& are found as the eigenvalues of the matrix of this system. The 
limit of stability of stationary motion relative to the corresponding perturbation is given 
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by the condition Lr = 0. The imaginary part of decrement hi is related to the pertur- 
bation phase velocity (in units of the stationary stream maximum velocity along the 
channel axis) by formula c = (60 / kG) hi. The eigenvalues h were determined by dia- 
gonalization of the complex matrix on a-computer with the use of the QR-algorithm. 

Calculations show that the basic level of instability is related to perturbations of the 

“even” kind to which corresponds an even amplitude of the stream function and an odd 
amplitude of temperature perturbation with respect to the channel middle. These per- 

turbations appear in the form of two vortex lines which are staggered at the boundaries 
of vertical streams Cl]. 

In what follows we present only the results related to the basic instability level. The 
approximations (2) are derived with the use of basic functions q*(O) and EIL(0) of appro- 

priate parity. Approximations containing six to fifteen functions in expansions of cp and 
6 were used in calculations. The comparison of results of various approximations shows 
that within the considered range of parameters these bases ensure a reasonable accuracy 
of determination of decrements and of the critical Grashof numbers. 

Fig. 1 Fig. 2 

Let us consider the obtained results. Neutral curves in the plane k, G are presented 

in Figs. 1 and 2 for some Prandtl numbers. The limiting curve P = 0 relates to the 
purely hydrodynamic approximation Cl]. It can be seen that taking into consideration 

thermal factors considerably lowers the cri- 

tical Grashof number with increasing Prandtl 
number. The absolute minimum of curve 
G (k), which determines the stability limit, 
shifts toward lower k with increasing P , i.e. 
an increase of wavelength of the most’dan- 
gerous perturbations takes place. 

The instability of flow with an even velo- 

Fig. 3 

city profile is caused by running perturbations 
whose phase velocity is nonzero (see [ 11). 
The effect of the wave number at various P 
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on the phase velocity of neutral perturbations is shown in Fig. 3. It is seen that in the 
wide interval of k, and in particular in the region of the neutral curve minimum, the 

phase velocity of perturbations is negative, i. e. the perturbations which disturb the sta- 

tionary motion arerunning downward. 
Summary data on the critical parameters which correspond to the absolute minimum 

of neutrai curves are shown in Table 1. As shown by calculations which were made up 

to P = 100, the critical wave number k, _ - 1.4, and the minimum Grashof number 

tends to zero according to the law G,,, a 488/ i/F. 

This asymptotic behavior implies that at high P the critical difference of tempera- 

Table 2 
tures increases with viscosity as Y*~z. The 

limitine law definitelv indicates that at 

P 

z.4 
b 
3 
5 

hoO 

km 

- 

- 
cm 

1720 2.05 -0.26 
1219 1.65 -0.52 

744 1.38 -0.87 
470 1.35 -1 .o’t 
359 1.35 -1.12 
259 1.35 -5.21 
171 1.38 --1.29 
ii5 1.40 --1..36 

high Puthe instabili; is caused by the 
buildup of running thermal waves in the 

stream (cf. @, 33). 
The dimensionless phase velocity of the 

most dangerous perturbations increases with 
increasing P . Thus at P = 20 it is more 

than one -and-a-half times greater than 
the velociq of downward currents (we re- 

call that the maximum velocity &q@/12Ov 
of the convective stream ascending along 

the channel axis [I] is taken as the unit of phase velocity ; in these units the maximum 
velocity of the downward currents is -0.3). 

The considerable distortion of the neutral curve appearing with increasing Prandtl 

number is noticeable. The most significant decrease of the critical Grashof number oc- 
curs in the region of small k (the long-wave branch). The value P = 5.7 is to some 
extent critical, since at it the neutral curve has a cuspidal point (with coordinates G z 

1900 and k = 1.7), while for P > 5.7 the neutral curve has a closed loop, clearly visi- 

ble in Fig.2 (P = 10). At high P line G (Ic) essentially consists of two neutral curves 
which continuo~ly pass from one to the other. The curve has two minima and it is pas- 

sible to speak of two kinds of instability. One of the neutral curve branches (the short- 
wave one) is close to the corresponding curve for purely hydrodynamic perturbations 

(the “hydrodynamic instability mode”), while the other - the long-wave branch - 
which appears at fairly high P is essentially determined by thermal factors (the “ther- 

mal mode”) ( l ) . The most dangerous perturbation is related to the latter mode and 
corresponds to the absolute minimum of the neutral curve. 

Thus a monotonic decrease of the critical Grashof number takes place with increasing 
Prandtl number. It is accompanied by a change of the instability mode from that of 
hydrodynamic at low P to the instability of the kind ofincreasing thermal waves at 

high P. 
The change of the instability mode can be clearly observed by examining the spectra 

l ) The occurrence of the closed loop on the neutral curve at high P and the presence 
of two kinds of i~~bili~ was recently noted, also, in the case of flow in the convective 
boundary layer at a heated vertical plate [4]. 
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of characteristic perturbations. At low P, as well as in the limit case of P = 0, the 
instability is related to the lower even hydrodynamic level ~0 (the notation introduced 
in [5] for the levels of convective perturbation spectra is used here and subsequently). 

A crowding of thermal levels takes place in the lower part of the spectrum with increas- 
ing Prandtl number and, beginning at P = 1 the instability at the long-wave branch of 
the neutral curve (small k) gradually passes to the lower thermal level vl. Further in- 

crease of P produces a widening of the wave number region in which the instability is 

associated with the level v1 . At P > 1.3 this region extends to the whole neutral curve. 
Formation of a loop on the neutral curve is associated with the interaction of two 

lower thermal levels v1 and va. An illustration of this interaction is provided by the 
decrement spectra at P = 10 for various wave numbers. These spectra, shown in Fig. 4, 
relate to four vertical cross sections in plane k, G indicated in Fig. 2 by dash lines . 

Fig. 4 

Letters a, b, C, . . . den&e neutral points. 
Real parts of thermal levels v1 and vg 

are shown in Fig.4. It will be seen that 
for k = 1. 5 only rhe instability prod- 
uced by the level v1 (neutral point a) 
exists to the left of the loop. The cross 

section k = 1.8 intersects the loop ; in 
the interval (b - d) we have instability 

with respect to perturbation Ye, while 
to the right of point c it is with respect 
to vQ; in region (c - d) both perturba- 

tions increase. For k =2.1 there is a 
v,-instability in the interval (e - f) 

and a v,-instability to the rigt.’ of point 
g. Finally, at cross section k = 2.5 we 
have only a YS- instability (neutral point 
h). Thus there exists at the neutral curve 

a point M at which separation of the 
two branches of the neutral curve takes 
place. Along the long-wave section in- 
stability is generated by the v,-pertur- 

bation and along the short-wave one it 
is generated by vs. The loop inner re- 

gion corresponds to instability associated with both perturbations. 
We note a particular peculiarity of spectra which, as far as the authors are aware, was 

not previously noted in investigations of hydrodynamic stability. This perculiarity con- 
sists of the appearance at certain definite values of parameters of a “complete intersec- 

tion” of the complex decrements, at which the real and the imaginary parts of two inter- 
secting modes coincide. An example of this is shown in Fig. 5 for P = 3 and k = 1.95 

(a) and k = 2.05 (b), where the complete intersection of levels v1 and vg takes place 
in the stability region (A? > 0). The formation of a loop on the neutral curve is, also, 
closely associated with the complete intersection of levels v1 and vg. The previously 
mentioned cuspidal point relates to those values of parameters P,G and k at which a 
complete intersection of decrements occurs at the neutral point h, = 0 (on the G -axis). 
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For P > 5.7 the complete intersection occurs in the instability region (5 < 0) for 
values of parameters corresponding to a point inside the loop. At P = 10 the complete 

intersection of levels vl and vg takes place in region 1.5 < k < 1.8 (see Fig. 4). A situ- 
ation close to the complete intersection of levels va and v6 (k = 2.5) is also seen in 
this figure. 

% 
fir 

Fig, 5 

Thus, as in the case of convective flow between planes heated to different tmperatures 
@I, the considered flow at high Prandtl numbers is unstable relative to thermal perturba- 
tions possessing a fairly high phase velocity (b~ldup of thermal waves in the stream). 
The difference is in that in the case of cubic profile flows different neutral curves cot- 
respond to instabilities of both kinds (factorization of the dispersion relationship owing 
to the oddness of the basic motion profile), with the thermal branch appearing at a cer- 
tain Prandtl number P,. In the case of wnvective flow induced by internal heat sources 
the new instability pattern is the result of continuo~ distortion of the single neutral curve 
which takes place with increasing Prandtl number. 

So far instabilities of the kind of thermal wave buildup have been established in three 
cases : the flow between parallel planes heated to different tem~rat~es ; the bo~da~ 
layer at a heated plate, and the flow induced by internal heat sources. It can be assumed 
that this form of instability is specific to any arbitrary convective flow. 
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